$\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporating in vacuo．Crystallization of the orange free base was accomplished from 2－PrOH．The dihydrochloride salt was prepared from the base in EtOAc solution by addition of anhydrous HCl in $\mathrm{Et}_{2} \mathrm{O}$ ．Ten grams（ 38% ）of pale yellow needles gave mp 231－233 ${ }^{\circ} \mathrm{C}$（with intumescense）．Anal．（ $\mathrm{C}_{14}{ }^{-}$ $\left.\mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$ ．

3，4，5，6－Tetrahydro－4－（2－propeny）－2H－1，5－methano－1，4－ benzodiazocin－9－amine Diethanesulfonate Hemihydrate（12）． Reduction of the nitro group of 11 was accomplished by the addition（without the application of external heat）of four $2-\mathrm{g}$ portions of Fe powder to a solution of $10 \mathrm{~g}(0.03 \mathrm{~mol})$ of the HCl salt of 11 in 100 mL of HOAc and 10 mL of $\mathrm{H}_{2} \mathrm{O}$ ．After overnight stirring and then evaporation to dryness，the residue was par－ titioned between dilute aqueous NaOH solution and CHCl_{3} ． Evaporation of the dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right) \mathrm{CHCl}_{3}$ left a tan powder，which was converted into the diethanesulfonate in 2－PrOH．Recrys－ tallization from 2－PrOH gave $1.0 \mathrm{~g}(7 \%), \mathrm{mp} 218-220^{\circ} \mathrm{C}$ ，of product 12．Anal．（ $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}^{1} / 2 \mathrm{H}_{2} \mathrm{O}$ ）C， H, N ．

Acknowledgment．We thank Dr．Stephen D．Clemans for interpretation of NMR protonation and chiral shift
reagent studies．We thank John D．Grego for GC studies of racemic and resolved la using the Mosher＇s reagent．We are grateful to Dr．William H．Thielking，Alan F．Dow，and Edward D．Parady for development work resulting in im－ proved synthetic techniques for making these compounds． Dr．David G．Teiger provided dependence，abuse liability evaluations，and EDTA antinociceptive data on 6．We thank especially Anne K．Pierson for the narcotic agon－ ist／antagonist bioassays．

Registry No．（ \pm ）－1a，80769－97－7；（－）－1a，80770－08－7；（－）－ 1a•l－mandelate，95763－76－1；（＋）－1a，80770－13－4；（＋）－1a $\cdot d$－ mandelate，95763－77－2；（ \pm ）－3a，80769－98－8；（ \pm ）－3b，80770－20－3； （ \pm ）－4a，80770－00－9；（ \pm ）－4b，80770－21－4；（ \pm ）－5，80770－01－0；（ \pm ）－5a， 80770－31－6；（土）－6，80770－03－2；（＋）－6，80770－16－7；（－）－6，80770－12－3； （ \pm ）－6（diazonium sulfate），95763－82－9；$(\pm)-7,95763-78-3 ;(\pm)-8$ ， 80770－30－5；（土）－9a，80770－28－1；（土）－9a－2HCl，80770－29－2；（土）－9b， 80770－32－7；（ \pm ）－10，80770－23－6；（ \pm ）－10．2HCl，95763－79－4；（ \pm ）－ $11 \cdot 2 \mathrm{HCl}, 95763-80-7$ ；（ \pm ）－12， $80770-25-8$ ；（ \pm ）－12．2 $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$ ， 80770－26－9；cyclopropanecarboxylic acid anhydride，33993－24－7．

Synthesis and Antimicrobial Evaluation of Bicyclomycin Analogues

Robert M．Williams，${ }^{*, \dagger}$ Robert W．Armstrong，and Jen－Sen Dung
Department of Chemistry，Colorado State University，Fort Collins，Colorado 80523．Received September 24， 1984

Abstract

The synthesis and antimicrobial evaluation of novel bicyclomycin analogues are described．The series of analogues were prepared from the basic 8，10－diaza－2－oxabicyclo［4．2．2］decane－7，9－dione（8），7，9－diaza－2－oxabicyclo［3．2．2］no－ nane－6，8－dione（9），8，10－diaza－5－methylene－2－oxabicyclo［4．2．2］decane－7，9－dione（10），and 7，9－diaza－4－methylene－2－ oxabicyclo［3．2．2］nonane－6，8－dione（11）nuclei．For compounds where $\mathrm{R}_{1}=p$－methoxybenzyl，deprotection of the lipophilic amides with ceric ammonium nitrate affords the corresponding lipophobic free amides．The basic bicyclic nucleus of bicyclomycin（ $8 \mathrm{~h}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$ ）has been synthesized for the first time as well as increasingly more complex congeners bearing the $\mathrm{C}-6 \mathrm{OH}, 5$－methylene； $\mathrm{C}-1^{\prime}-\mathrm{C}-3^{\prime}$ trihydroxyisobutyl group．In general，it has been found that the bicyclic nucleus of bicyclomycin is devoid of antimicrobial activity，the entire structure of bicyclomycin being generally obligate for activity．In one instance，the racemic analogue 10c（ $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=$ $\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$ ）showed interesting antimicrobial activity against several Gram－positive organisms；the minimum inhibitory concentrations were of the same order of magnitude as bicyclomycin displays toward Gram－negative organisms． Totally synthetic（ \pm ）－bicyclomycin was half as active as the natural antibiotic．The design，synthesis，and antimicrobial activity（and／or lack thereof）of bicyclomycin and the analogues are discussed in the context of a proposed chemical mechanism of action．

Bicyclomycin ${ }^{1}$（bicozamycin，1）is an antibiotic obtained from cultures of Streptomyces sapporonensis ${ }^{2}$ and Streptomyces aizunensis．${ }^{3}$ Bicyclomycin is biosynthe－ sized 4 from leucine and isoleucine and possesses a unique chemical structure amongst the known classes of antibi－ otics．The low toxicity and ready availability of bi－

cyclomycin from fermentation have resulted in the recent commercial introduction of bicozamycin ${ }^{5}$ as an effective agent against nonspecific diarrhea for humans and bac－ terial diarrhea of calves and pigs．${ }^{6}$ The mechanism of action of bicyclomycin is also thought to be unique and has been the subject of several accounts．${ }^{7}$

[^0]Scheme I

Bicyclomycin is active against Gram－negative bacteria such as Escherichia coli，Klebsiella，Shigella，Salmonella，

[^1]
Scheme II

Citrobacter, Enterobacter cloacae, and Neisseria but is inactive against Proteus, Pseudomonas aeruginosa, and Gram-positive bacteria. Iseki et al. ${ }^{7}$ have shown that bicyclomycin irreversibly and covalently binds inner-membrane proteins (BBP's) of E. coli that are distinct from penicillin-binding proteins. The function of the bi-cyclomycin-binding proteins (BBP's) and the chemical mechanism by which bicyclomycin binds to these proteins remains to be determined. The stoichiometry of the bi-cyclomycin-BBP complex has been shown ${ }^{7}$ to be 1:1, and further, the binding is inhibited by the addition of thiols. ${ }^{8}$

A Ciba-Geigy group ${ }^{9}$ has prepared a large number of semisynthetic bicyclomycin derivatives and found that most structural modifications result in reduction or loss of biological activity. Unfortunately, a clear structureactivity relationship has not emerged from the abovementioned studies. Iseki and co-workers ${ }^{7}$ reported on the reaction of the C-5 exo-methylene moiety of bicyclomycin with methanethiol at high pH and suggested that the C-5 double bond may be the active functionality that could irreversibly alkylate a sulfhydryl residue on the BBP. ${ }^{8}$ Careful inspection of the bicyclomycin structure and consideration of the regiochemistry of the mercaptan addition suggest that bicyclomycin may act as a "latent" α, β-unsaturated pyruvamide (2), which should undergo facile Michael-type addition at $\mathrm{C}-5=\mathrm{CH}_{2}(1 \rightarrow 2 \rightarrow 3$, Scheme I). Such a general-base-catalyzed mechanism readily accounts for the regiochemistry of the mercaptan adduct ($3, \mathrm{R}=\mathrm{CH}_{3}$) reported by Iseki et al. ${ }^{7}$

Alternatively, bicyclomycin may irreversibly alkylate the BBP's by a distinctly different but related "latent" Mi-chael-acceptor mechanism in vivo. Being itself a peptide, bicyclomycin may be interacting with a protease or transpeptidase type protein that functions by catalytically cleaving a peptide bond during the biosynthesis of the bacterial cell envelope. As proposed in Scheme II, cleavage of the 9,10 -amide bond by the protein produces acyl en-
(5) Merck Index, 10th ed., No. 1213. Bicozamycin is the commercial name licensed to Fujisawa Pharmaceutical Co., Japan; aizumycin and bicyclomycin are synonyms; "bicyclomycin" shall be used throughout this paper.
(6) Private communication, Fujisawa Pharmaceutical Co., Japan.
(7) (a) Someya, A.; Iseki, M.; Tanaka, N. J. Antibiotics 1978, 31, 712. (b) Tanaka, N.; Iseki, M.; Miyoshi, T.; Aoki, H.; Imanaka, H. Ibid. 1976, 29, 155.
(8) Someya, A.; Iseki, M.; Tanaka, N. J. Antibiot: 1979, 32, 402. A detailed mechanism for the thiolate addition has not been suggested.
(9) Muller, B. W.; Zak, O.; Kump, W.; Tosch, W.; Wacker, O. J. Antibiot. 1979, 32.

Scheme III

${ }^{a}$ (a) 2 equiv of $\mathrm{LiAlH}_{4} / \mathrm{THF}, 25^{\circ} \mathrm{C}, 1 \mathrm{~min}$; $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ quench; (b) 1 equiv of $\mathrm{AgClO}_{4}, \mathrm{THF}, 25$ ${ }^{\circ} \mathrm{C}$; (c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$; (d) $\mathrm{NaBH}_{3} \mathrm{SePh}, \mathrm{THF}$; (e) 30% $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}, 55^{\circ} \mathrm{C}$; (f) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (g) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$.
zyme derivative 4. The amide-derived NH_{2} (at C-6, 4) should be rapidly expelled as $\mathrm{NH}_{3}{ }^{10}$ at physiological pH , forming the α, β-unsaturated pyruvamide 5a, which may similarly undergo conjugate addition resulting in the "suicide" inactivation of the BBP.
Finally, it is possible that a nucleophile may undergo allylic addition at C-5 that does not per se require the intermediacy of a ring-opened α, β-unsaturated species such as 2 or 5 (Scheme III, $1 \rightarrow 7$).
In order to gain some insight into the chemical mechanism of action of bicyclomycin, vis-a-vis the proposals outlined above, we have designed and synthesized a series of bicyclomycin analogues and have evaluated them for biological activity. We were primarily interested in probing the obligate partnership of the C-5 exo-methylene moiety and the C-6 hydroxyl group as a minimal structural requirement for biological activity rather than making more random peripheral structural changes. Furthermore, all of our synthetic analogues were specifically prepared in racemic form to allow for the greatest versatility in identifying intrinsic biological activity; all previously reported semisynthetic analogues possessed only the natural configuration.

Recently, we have reported ${ }^{11-14}$ on the development of a versatile and efficient synthesis of the bicyclo[4.2.2] nucleus (8 and 10, $R_{2}=R_{3}=H$) that can be regioselec-

[^2]Scheme V

tively elaborated into a multitude of structurally diverse bicyclomycin analogues via, carbanion substitution at the $\mathrm{C}-1$ and C-6 bridgehead positions. This methodology has allowed making deepseated functional group modifications in the bicyclo[4.2.2] nucleus from a few simple bicyclic precursors. In increasing order of complexity, we have examined analogues both bearing and lacking the following: (a) substitution of $\mathrm{N}-8$ and $\mathrm{N}-10$, (b) the C-6 hydroxyl group, (c) the C-5 exo-methylene moiety, and (d) the C-$1^{\prime}-\mathrm{C}-3^{\prime}$ trihydroxyisobutyl side chain. In addition, we have developed a parallel series of analogues based on the homologous bicyclo[3.2.2] ring system (9 and 11) whose anticipated increased ring strain was hoped to impart increased biological activity.

Results and Discussion

The bicyclic precursors 8 and $9\left(R_{1}=\right.$ alkyl, aryl; $R_{2}=$ $R_{3}=R_{4}=H$) were prepared as previously described. ${ }^{11,12,14,15}$ Substrates 10 were prepared according to the methods we have recently disclosed ${ }^{13,16}$, in our total synthesis of bicyclomycin.

The homologous bicyclo[3.2.2] nucleus 11 was prepared as outlined in Scheme IV. The syn lactone 14 or its syn diastereomer could be converted into bicyclic olefin 18 by the procedure that is outlined. It is significant to point out that the bicyclo[3.2.2] nucleus 18 contains considerable strain energy as evidenced by the $1695-\mathrm{cm}^{-1}$ infrared absorbtion of the amide carbonyls relative to the bicyclo[4.2.2] nucleus $10 \mathrm{a}\left(1660-1675 \mathrm{~cm}^{-1}\right)$.
These common bicyclic nuclei 8-11 $\left(\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}\right.$, Chart I) served as the substrates from which the analogues were regioselectivity elaborated according to the protocol we have developed. ${ }^{11,12}$ Table I provides a tabulation of the compounds synthesized that have been evaluated for antimicrobial activity.

It is significant to point out that, of the amide N-protecting groups we have evaluated $\left(\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{Ph}\right.$,

[^3]Chart I

ㅇ

10

12

$\underline{9}$

II

13
$\mathrm{Ph}-p-\mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}$), only the N-(p-methoxybenzyl) amides could be deprotected ($\mathrm{N}-\mathrm{R} \rightarrow \mathrm{N}-\mathrm{H}$) under sufficiently mild conditions (ceric ammonium nitrate (CAN), MeCN, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$) for the bicyclic structure and attendant functionality to remain intact. The identification of a suitable and generally useful blocking group for the amides turned out to be a crucial element for the present study as well as our related studies on the total synthesis of bicyclomycin. ${ }^{13,16}$ The corresponding N-benzyl protecting group, which has been utilized in a recently communicated ${ }^{17}$ total synthesis, was found to be uniformly unsuitable for making bicyclic structures bearing free-NH

[^4]Table I. Synthetic Bicyclomycin Analogues Submitted for Antimicrobial Assay ${ }^{a}$

compd	R_{1}	R_{2}	R_{3}	R_{4}	$\mathrm{ref}^{\text {b }}$
8a	CH_{3}	H	H	H	11
8b	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	H	11
8 c	$\mathrm{CH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}$	H	H	H	14
8d	$\mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}$	H	H	H	14
8 e	CH_{3}	SCH_{3}	H	H	12
8 f	CH_{3}	CH_{3}	SCH_{3}	H	12
8 g	CH_{3}	CHOHPh	H	H	12
8h	H	H	H	H	c
$8 \mathbf{1}$	H	OH	H	H	c
8j	$\mathrm{CH}_{2} \mathrm{Ph}$	OH	H	H	c
9 a	CH_{3}	H	H	H	12
9 b	CH_{3}	COPh	H	H	12
9 c	H	H	H	$\mathrm{CH}=\mathrm{CH}_{2}$	c
9d	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	$\mathrm{CH}=\mathrm{CH}_{2}$	c
17	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	$\mathrm{CH}_{2} \mathrm{OH}$	c
10a	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H		16
10b	H	H	H		b
10c	$\mathrm{CH}_{2} \mathrm{Ph}$	OH	H		16
10d	H	OH	H		c
18	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H		c
12a	$\mathrm{CH}_{2} \mathrm{Ph}$	OH	$(\mathrm{Me})_{2} \mathrm{C}$		c
12b	H	H	H	H	c
12c	H	OH	H	H	
13a	H	OH	H	H	16

${ }^{a}$ See Table II for the standard 20 microorganism assay used. ${ }^{b}$ See indicated reference for experimental preparation. ${ }^{c}$ New compound not previously reported; experimental procedure appears in the Experimental Section.
amides. In our hands, numerous oxidative ($\mathrm{CAN}, \mathrm{CrO}_{3}$, DDQ), reductive ($\mathrm{Li} / \mathrm{NH}_{3}, \mathrm{Na} / \mathrm{NH}_{3}, 10 \% \mathrm{Pd} / \mathrm{C}, 20 \%$ $\left.\mathrm{Pd} / \mathrm{C}, 20 \% \mathrm{Pt}(\mathrm{OH})_{2} / \mathrm{C}\right)$, and hydrolytic $\left(\mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{PhOH}\right.$, TFA, HBr) attempts (many solvents, temperatures, etc. examined) to remove the N-benzyl groups on more than a dozen bicyclic compounds resulted in cleavage of the bicyclic system (C-1-O ether linkage) and/or (in the case of hydrogenolysis) saturation of the benzylic aromatic rings. Scheme V illustrates the synthesis of demethylenebicyclomycin 12c and 6-deoxydemethylenebicyclomycin 12b from the same unsubstituted bicyclic precursor 8c. Both systems displayed relatively modest selectivity in the aldol condensation step as compared to that we have achieved ${ }^{16}$ in the total synthesis of 1 . This was especially true for the deoxy compound 19 , which was the intermediate diastereomer (shown) in the condensation. ${ }^{19}$ The anomalous behavior ${ }^{11,12,16}$ of this aldol condensation may be attributable to the C-6 trimethylsilyl residue, which presumably alters the conformation of the bicyclic carbanion relative to the C-6 alkoxy species.

As expected, removal of the amide blocking groups changes the solubility characteristics of the structure from being generally lipophilic/hydrophobic (N -alkylated) to hydrophilic/lipophobic ($-\mathrm{NH}-$). It is noteworthy that the simplest bicyclomycin analogue $\mathbf{8 h}$ is totally devoid of antibacterial activity. Adding functionality to this basic nucleus in order of increasing complexity furnishes the structures shown below. These basic bicyclic nuclei have

8n

\boldsymbol{B}_{i}

10 b

10 d
all been prepared for the first time by cerric ammonium
(18) The excellent procedure of Yoshimura was employed: Yoshimura, J.; Yamaura, M.; Suzuki, T.; Hashimoto, H. Chem. Lett. 1983, 1001.
(19) We thank Dr. Hans Maag for providing a spectrum of compound 12b ($\left.R_{1}=R_{2}=R_{3}=R_{4}=H\right)$.

Table II. Minimal Inhibitory Concentration ${ }^{a}(\mu \mathrm{~g} / \mathrm{mL})$

		$\begin{gathered} 10 \mathrm{c}\left(\mathrm{R}_{1}=\right. \\ \mathrm{CH}_{2} \mathrm{Ph}, \\ \mathrm{R}_{2}=\mathrm{OH}, \\ \left.\mathrm{R}_{3}=\mathrm{H}\right) \end{gathered}$	$\begin{gathered} \text { bi- } \\ \text { cyclomy- } \\ \text { cin Ro } \\ 21-7023 \end{gathered}$
G- rods	Pseudomonas aeruginosa 56	>1000	>1000
	Proteus vulgaris 101N	>1000	>1000
	Escherichia coli 94	>1000	250
	Klebsiella pneumoniae 369	>1000	250
	Serratia marcescens SM	>1000	>1000
	Serratia sp. 101	>1000	>1000
	Acinetobacter calcoaceticus PCI_{3}	>1000	1000
$\mathrm{G}+\operatorname{cocci}$	Streptococcus faecium ATCC 8043	>1000	>1000
	Staphylococcus aureus 82	>1000	>1000
	Micrococcus luteus PCI	500	>1000
G+ rods	Bacillus megaterium 164	500	>1000
	Bacillus sp. E	>1000	>1000
	Bacillus subtilis 558	250	>1000
	Bacillus sp. TA	250	>1000
	Mycobacterium phlei 78	>1000	1000
G+ filament molds	Streptomyces cellulosae 097	500	500
	Paecilomyces varioti M16	>1000	>1000
	Penicillium digitatum 0184	>1000	>1000
yeasts	Candida albicans 155	>1000	>1000
	Saccharomyces cerevisiae 90	>1000	>1000

${ }^{a}$ Lowest concentration still showing zone of inhibition by the agar-diffusion well method (serial dilutions up to $1000 \mu \mathrm{~g} / \mathrm{mL}$).
nitrate deprotection ${ }^{18}$ of the corresponding N, N^{\prime}-bis (p methoxybenzyl) derivatives as described in the Experimental Section. Both the 6 -hydroxy- 5 -demethylene derivative 8 i and the 6 -deoxy- 5 -methylene derivative 10 b lack antimicrobial activity at the maximum levels tested (1 $\mathrm{mg} / \mathrm{mL}$). Antimetabolite tests were carried out on minimal agar medium by the agar-diffusion well method. Table II provides the antimicrobial spectrum of the only active analogue, $10 \mathrm{c}\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}\right)$; all other compounds tested against the 20 microorganism screen (see Table II) were inactive. Although the activity exhibited by the N-benzyl compound 10 c was relatively weak, we were surprised to discover that this material displayed a different spectrum of activity than bicyclomycin, showing Gram-positive inhibition against Micrococcus luteus, Bacillus megaterium, Bacillus subtilus, Bacillus sp. TA, and Streptomyces cellulosae. It should also be noted that all of the compounds tested are racemic and (presumably) the activity exhibited by 10 c results from a single antipode. The absolute configuration of the active antipode for analogue 10 c remains to be determined; the different spectrum of activity suggests that the naturally configured antipode is not necessarily the one displaying antimicrobial activity. The activity displayed by compound 10 c when compared to the total lack of antimicrobial activity of the demethylene 8 and deoxy (10 a and 10b) analogues would seem to support the hypotheses outlined in Schemes I and II that the partnership of the C5 exo-methylene and C-6 hydroxyl group in this unique bicyclic structure are obligate, minimal structural requirements for antimicrobial activity. However, the lack of activity displayed by the corresponding lipophobic derivative $10 d$ indicates that the solubility characteristics of these structures are very important. Compound 10d, which contains the complete structural nucleus of bicyclomycin but lacks the $\mathrm{C}-1^{\prime}-\mathrm{C}-3^{\prime}$ trihydroxyisobutyl side chain, indicates the potential importance of this moiety for binding, chelation, or penetration. The Ciba-Geigy study as well as the diminished activity of the $\mathrm{C}-1^{\prime} / \mathrm{C}-2^{\prime}$ acyl derivatives of bicyclomycin also points to the importance of the C-$1^{\prime}-\mathrm{C}-3^{\prime}$ functionality. The demethylenebicyclomycin de-
rivative 12c was also inactive, which again suggests that the complete structure of bicyclomycin is generally obligate for antimicrobial activity. The active analogue 10 c , which displays a different spectrum of activity than bicyclomycin, is indicative of a distinct enzymic target; the mechanism of action in terms of chemical interaction with the bacterial proteins, however, may be similar for both 10c and 1. It is expected that demonstration of enzyme inhibitory properties for these compounds will be forthcoming. Preliminary evaluation of totally synthetic (\pm)-bicyclomycin ${ }^{16}$ showed half the antimicrobial activity of the optically pure (+) natural sample against E. coli 94 and Klebsiella pneumoniae 369. This result indicates that the enantiomorph in the racemate is devoid of antimicrobial activity.

The bicyclo[3.2.2] homologues 9 a-e, 17, and 18 did not exhibit antimicrobial activity, again indicating that this bicyclic nucleus lacks intrinsic activity. Attempts to hydroxylate 18 at the bridgehead position ${ }^{20}$ have thus far been unsuccessful in producing testable amounts of material. Thus a direct comparison of the bicyclo[3.2.2] homologue of 10 c is presently not available and will have to await future scrutiny.

These preliminary investigations into the pharmacological potentialities of a unique class of antibiotics first represented by 1 suggest many interesting structural and mechanistic experiments to further test the hypotheses outlined in Schemes I-III as well as fostering more refined notions of the chemical mechanism of action of bicyclomycin. Studies along these lines are in progress and shall be reported on in due course from these laboratories.

Experimental Section

${ }^{1} \mathrm{H}$ NMR spectra were recorded on JEOL FX-100 (100 MHz), IBM/Bruker WP-270 (270 MHz) and WP-200 (200 MHz), or Nicolet (360 MHz) spectrometers and are reported in δ values. Melting points were recorded on a Mel-Temp instrument in open capillaries and are uncorrected, Microanalyses are within $\pm 0.4 \%$ of the calculated values. Infrared spectra were recorded on a Beckman 4240 spectrophotometer and are reported as $\lambda_{\max }\left(\mathrm{cm}^{-1}\right)$. Low-resolution mass spectra were determined on a VG MM16F-GC mass spectrometer.

Thin-layer chromatography (TLC) was carried out on E. Merck $0.25-\mathrm{mm}$ precoated silica gel glass plates ($60 \mathrm{~F}-254$) by using 5% phosphomolybdic acid in ethanol-heat and/or UV light as developing agent. Preparative-layer chromatography (PTLC) was carried out on glass-backed TLC plates with a fluorescent indicator on a Harrison Research chromatotron using $1.0-, 2.0$-, or $4.0-\mathrm{mm}$ layer thickness silica gel adsorbents. Separations of less than 50 mg were carried out on standard glass-backed E. Merck $0.25-\mathrm{mm}$ silica gel plates; the separated products were eluted from the adsorbent with distilled THF. Flash column chromatography was performed by using Woelm silica gel 32-63.

Solvents and reagents were all purified and dried according to standard protocol. NMR multiplicities are reported by using the following abbreviations: s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet; J, coupling constant in hertz. The chemical shifts of protons part of an AB quartet $(1 / 2 \mathrm{AB}$ q) was calculated by using a standard weighting formula.

8,10-Diaza-2-oxabicyclo[4.2.2]decane-7,9-dione (8h, $\mathbf{R}_{1}=$ $\mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{R}_{4}=\mathbf{H}$). To a stirred, room temperature suspension of 8,10 -bis (p-methoxybenzyl)-8,10-diaza-2-oxabicyclo[4.2.2]de-cane-7,9-dione (8 c), prepared as described in ref $14(68 \mathrm{mg}, 0.165$ $\mathrm{mmol}, 1.0$ equiv), in 33% aqueous acetonitrile (1.5 mL) was added CAN ($318 \mathrm{mg}, 0.58 \mathrm{mmol}, 3.5$ equiv). The mixture was stirred at room temperature for 2 h and absorbed onto PTLC silica gel (eluted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $16 \mathrm{mg}(57 \%)$ of the debenzylated product 8 a as an amorphous white solid: ${ }^{21}$ NMR
(20) Compound 18 can be regioselectively elaborated at both bridgehead positions exactly analogous to 10a via generation and quenching of the corresponding bridgehead carbanions.
(270 MHz) $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.729-1.754(2 \mathrm{H}, \mathrm{m}), 1.895-1.930$ $(2 \mathrm{H}, \mathrm{m}), 3.631-3.724(2 \mathrm{H}, \mathrm{m}), 3.816(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.972(1 \mathrm{H}, \mathrm{d}$, $J=4.73 \mathrm{~Hz}$), $8.405(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.897(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; IR (NaCl , neat) $1685,1445,1415,1105,1025 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 170\left(\mathrm{M}^{+}\right.$, 16), 169 (1.9), 155 (2.3), 142 (4.6), 127 (14.4), 111 (13.3), 97 (20), 85 (25.7), 83 (26.2), 77 (100).

Note: Additional, firm evidence for the assigned structure was obtained by treatment of this material with $\mathrm{NaH} / \mathrm{BrCH}_{2} \mathrm{Ph}$ in $\mathrm{Me}_{2} \mathrm{SO}$ to afford in 55% yield 8,10-dibenzyl-8,10-diaza-2-oxabi-cyclo[4.2.2]decane-7,9-dione ($8 \mathrm{~b}, \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}$; $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=$ H ; see ref 11 for spectroscopic and analytical data).

8,10-Bis (p-methoxybenzyl)-8,10-diaza-6-hydroxy-2-oxa-bicyclo[4.2.2]decane-7,9-dione (8, $\mathbf{R}_{1}=\mathbf{C H}_{2} \mathbf{P h}-\boldsymbol{p}-\mathrm{OCH}_{3} ; \mathbf{R}_{2}$ $=\mathbf{O H} ; \mathbf{R}_{3}=\mathbf{R}_{4}=\mathbf{H}$). To a stirred solution of 8,10-bis(p-meth-oxybenzyl)-8,10-diaza-2-oxabicyclo[4.2.2]decane-7,9-dione ${ }^{14}$ (8c; $163 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv) in THF (7.5 mL) containing HMPA ($0.35 \mathrm{~mL}, 1.987 \mathrm{mmol}, 5.0$ equiv) at $-78^{\circ} \mathrm{C}$ was added a solution of LDA ($0.51 \mathrm{mmol}, 10$ equiv) in THF (2.5 mL). While the dark-colored solution was stirred for 34 min at $-78^{\circ} \mathrm{C}$, a stream of dry O_{2} was bubbled through the solution for 5 min at $-78^{\circ} \mathrm{C}$; the cooling bath was removed, and oxygen was bubbled through the mixture until the temperature had reached ambient. Several drops of $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was diluted with ether, poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted thoroughly with ether. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and separated by PTLC silica gel (eluted with 6% acetone in $\mathrm{Et}_{2} \mathrm{O}$) to afford 89 mg (53% or 62.6% based on recovered starting material) of the pure bridgehead alcohol 8: $m p 187-187.5{ }^{\circ} \mathrm{C}$ (recryst $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}, \mathrm{CHCl}_{3}\right) \delta 1.463-1.533(2 \mathrm{H}, \mathrm{m}), 0.778-1.881$ $(2 \mathrm{H}, \mathrm{m}), 3.257\left(1 \mathrm{H}, \mathrm{dd} ; J_{1}=13.32 \mathrm{~Hz}, J_{2}=9.23 \mathrm{~Hz}\right), 3.714-3.723$ $(1 \mathrm{H}, \mathrm{m}), 3.758(3 \mathrm{H}, \mathrm{s}), 3.771(3 \mathrm{H}, \mathrm{s}), 4.191(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=$ $14.26 \mathrm{~Hz}), 4.503(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=13.88 \mathrm{~Hz}), 4.725(1 \mathrm{H}, \mathrm{s}), 4.777$ $(1 \mathrm{H}, 1 / 2 \mathrm{AB} q, J=13.88 \mathrm{~Hz}), 4.925\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ q, $J=14.26 \mathrm{~Hz}$), 5.158 ($1 \mathrm{H}, \mathrm{s}$), 6.776-6.852 ($4 \mathrm{H}, \mathrm{m}$), $7.197-7.229$ ($2 \mathrm{H}, \mathrm{m}$), $7.340-7.428$ ($2 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3370,1675,1610,1505,1430$, $1240,1170,1100,1025,920,800 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 426$ ($\mathrm{M}^{+}, 3.6$), 340 (1.0), 305 (2.1), 241 (11.3), 226 (10.9), 219 (198), 210 (1.4), 192 (10.2), 175 (2.1), 162 (492), 156 (16.9), 149 (7.3), 136 (11.9), 121 (100), 116 (97.9), 101 (39.6). Anal. ($\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$) C, H, N.

8,10-Diaza-6-hydroxy-2-oxabicyclo[4.2.2]decane-7,9-dione $\left(8 \mathbf{i}, \mathbf{R}_{1}=\mathbf{H} ; \mathbf{R}_{2}=\mathbf{O H} ; \mathbf{R}_{3}=\mathbf{R}_{4}=\mathbf{H}\right)$. To a stirred, room temperature solution of $8\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}_{4}\right.$ $=\mathrm{H})\left(35 \mathrm{mg}, 0.082 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~mL}, 2: 1$ v / v) was added CAN ($202 \mathrm{mg}, 0.369 \mathrm{mmol}, 4.5$ equiv) in one portion. The mixture was stirred for 80 min at room temperature and directly separated on PTLC silica gel (eluted with $12 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $5.2 \mathrm{mg}(35 \%)$ of the deprotected amide 8 i as an amorphous white solid: ${ }^{21}{ }^{1} \mathrm{H}$ NMR (270 MHz) ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.550-1.723(2 \mathrm{H}, \mathrm{m}), 1.767-2.035(2 \mathrm{H}, \mathrm{m}), 3.585-3.760$ $(2 \mathrm{H}, \mathrm{m}), 4.802(1 \mathrm{H}, \mathrm{d}, J=4.37 \mathrm{~Hz}), 6.592(1 \mathrm{H}, \mathrm{s}), 8.706(1 \mathrm{H}$, br s), $8.983(1 \mathrm{H}, \mathrm{d}, J=4.37 \mathrm{~Hz})$; IR (NaCl , neat) $3260,3200,1685$, $1440,1275,1130,1070 \mathrm{~cm}^{-1}$.

8,10-Dibenzyl-8,10-diaza-6-hydroxy-2-oxabicyclo[4.2.2]-decane-7,9-dione (8j, $\mathbf{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}_{2}=\mathbf{O H} ; \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$). To a stirred solution of 8,10-dibenzyl-8,10-diaza-2-oxabicyclo-[4.2.2]decane-7,9-dione ($8 \mathrm{~b}, \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$; see ref 11 for preparation) ($25 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.0$ equiv) and HMPA (62 $\mu \mathrm{L}, 0.35 \mathrm{mmol}, 5$ equiv) in THF (2 mL) at $-78^{\circ} \mathrm{C}$ was added LDA ($0.107 \mathrm{mmol}, 1.5$ equiv) in THF (1 mL). After stirring of the dark-colored solution for 50 min at $-78^{\circ} \mathrm{C}$, a stream of dry O_{2} gas was bubbled through the solution for 70 min at $-78^{\circ} \mathrm{C}$, and the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$. The reaction was allowed to warm to room temperature, stirred 20 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into brine, and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated and separated on PTLC silica gel (eluted with $\mathrm{Et}_{2} \mathrm{O}$) to afford the tertiary alcohol 8 j ($9.3 \mathrm{mg}, 35.7 \%$ or 53% based on recovered starting material) oil: ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$,
(21) Compounds reported as amorphous solids were recalcitrant to recrystallization and were precipitated from MeOH or THF; combustion analytical data were not obtainable on these materials.
$\left.\mathrm{CHCl}_{3}\right) \delta 1.46-2.06(4 \mathrm{H}, \mathrm{m}), 3.19-4.07(2 \mathrm{H}, \mathrm{m}), 4.24\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB}\right.$ $\mathrm{q}, J=14.4 \mathrm{~Hz}), 4.62(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=13.9 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exch $), 4.79\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=13.9 \mathrm{~Hz}\right), 5.04\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ q, $J=14.4 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{s}), 7.30-7.47(10 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3400,3060,3015,1675,1600,1585,1495,1435,1260,1085,730$, $690 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 366\left(\mathrm{M}^{+}, 0.7\right), 275$ (0.7), 57 (100).

7,9-Bis (\boldsymbol{p}-methoxybenzyl)-7,9-diaza-4-vinyl-2-oxabicyclo-[3.2.2]nonane-6,8-dione (9, $\mathbf{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}$ - \boldsymbol{p} - $\mathrm{OCH}_{3} ; \mathbf{R}_{2}=\mathbf{R}_{3}=$ $\mathbf{H} ; \mathbf{R}_{4}=\mathbf{C H}=\mathbf{C H}_{2}$) [note: the preparation of 7,9 -bis $(p$-meth-oxybenzyl)-7,9-diaza-4-[2-(phenylselenyl)ethyl]-2-oxabicyclo-[3.2.2]nonane-6,8-dione ($9, \mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OMe}$; $\mathrm{R}_{2}=\mathrm{R}^{3}=\mathrm{H}$; $\mathrm{R}_{4}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}$) appears in ref 16b]: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.20-1.40(2 \mathrm{H}, \mathrm{m}), 2.20-2.38(1 \mathrm{H}, \mathrm{m}), 2.72(2 \mathrm{H}, \mathrm{t}, J=7.80$ Hz), $3.51\left(1 \mathrm{H}, \mathrm{dd}, \mathcal{J}_{\text {vic }}=10.31 \mathrm{~Hz}, J_{\mathrm{gem}}=12.59 \mathrm{~Hz}\right), 3.75(1 \mathrm{H}$, s), $3.78-3.88(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.19\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB}\right.$ q, $J=14.61 \mathrm{~Hz}$), $4.29(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=14.86 \mathrm{~Hz}), 4.74(1 \mathrm{H}$, $1 /{ }_{2} \mathrm{AB}$ q, $J=14.86 \mathrm{~Hz}$), $4.74(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=14.61 \mathrm{~Hz}), 5.02$ $(1 \mathrm{H}, \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.64 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.68 \mathrm{~Hz})$, $7.05(2 \mathrm{H}, \mathrm{d}, J=8.68 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.64 \mathrm{~Hz}), 7.26-7.30$ ($3 \mathrm{H}, \mathrm{m}$), 7.45-7.49 ($2 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) 1691, 1612, 1515, $1247,1030 \mathrm{~cm}^{-1} ;$ mass spectrum, $m / e 580\left(\mathrm{M}^{+}, 5.2\right), 459(3.5), 423$ (2.4), 121 (100).

To a stirred solution of $9\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OMe}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}\right.$, $\left.\mathrm{R}_{4}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SePh}\right)^{16}(80 \mathrm{mg}, 0.138 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) at room temperature was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.02 \mathrm{~mL}, 0.691$ mmol, 5.0 equiv), and the mixture was heated to reflux. After 20 min , the mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into $\mathrm{H}_{2} \mathrm{O}$, and exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and separated by PTLC silica gel to afford $47 \mathrm{mg}(81 \%)$ of olefin 9 as a solid: mp $115-116^{\circ} \mathrm{C}$ (recryst $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3},\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}\right) \delta 2.85(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{\text {vic }}=7.52 \mathrm{~Hz}, J_{\text {vic }}=7.12 \mathrm{~Hz}, J_{\text {vic }}=7.12 \mathrm{~Hz}\right), 3.69-3.89(2 \mathrm{H}, \mathrm{m})$, $3.79(6 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{s}), 4.10\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB} \mathrm{q}, J=14.64 \mathrm{~Hz}\right), 4.29$ ($1 \mathrm{H},{ }^{1} / 2 \mathrm{AB} \mathrm{q}, J=14.74 \mathrm{~Hz}$), $4.77\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ q,$J=14.64 \mathrm{~Hz}$), $4.96\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=14.74 \mathrm{~Hz}\right), 5.07(1 \mathrm{H}, \mathrm{s}), 5.11\left(1 \mathrm{H}, \mathrm{d}, J_{\text {cis }}\right.$ $=9.55 \mathrm{~Hz}), 5.15\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{trans}}=17.05 \mathrm{~Hz}\right), 5.23\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{cis}}\right.$ $\left.=9.55 \mathrm{~Hz}, J_{\mathrm{trana}}=17.05 \mathrm{~Hz}, J_{\text {vic }}=7.52 \mathrm{~Hz}\right), 6.85(4 \mathrm{H}, \mathrm{d}, J=8.47$ $\mathrm{Hz}), 7.12(4 \mathrm{H}, \mathrm{d}, J=8.47 \mathrm{~Hz})$; IR (NaCl , neat) $1690,1612,1513$, $1240,1030 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 422\left(\mathrm{M}^{+}, 7.1\right)$, 301 (11.2), 217 (2.5), 121 (100). Anal. ($\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$) C, H, N.

7,9-Diaza-4-vinyl-2-oxabicyclo[3.2.2]nonane-6,8-dione (9c, $\mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{H} ; \mathbf{R}_{4}=\mathbf{C H}=\mathbf{C H}_{2}$). To a stirred solution of 7,9-bis (p-methoxybenzyl)-7,9-diaza-4-vinyl-2-oxabicyclo[3.2.2]-nonane-6,8-dione (9, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)\left(100 \mathrm{mg}, 0.237 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.48 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~mL})$ was added ceric ammonium nitrate (324.7 mg , $0.592 \mathrm{mmol}, 2.5$ equiv). The mixture was allowed to stir for 15 \min at ambient temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and immediately separated on chromatotron (PTLC) silica gel (eluted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford unreacted starting material (49 mg), a mixture of mono-N-deprotected olefins (21 mg), and the desired N, N-deblocked olefin 9 c ($5 \mathrm{mg}, 12 \%$ or 22% by conversion) as an amorphous solid. ${ }^{21}$ 9c: ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 2.75(1 \mathrm{H}, \mathrm{m}), 3.54$ ($1 \mathrm{H}, \mathrm{s}$), $3.60(1 \mathrm{H}, \mathrm{dd}, J=9.76, J=12.76 \mathrm{~Hz}$), $3.85(1 \mathrm{H}$, dd, $J=5.44, J=12.76 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{s}), 5.13(1 \mathrm{H}, \mathrm{dd}, J=10.43$, $J=1.13 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{dd}, J=17.51, J=1.13 \mathrm{~Hz}), 5.65(1 \mathrm{H}$, dd, $J=10.43, J=17.51, J=7.23$); IR (NaCl , neat) 3250,1690 , $1615,1518,1245,1050 \mathrm{~cm}^{-1}$. The mixture of mono-N-deprotected olefins upon treatment with CAN (6 equiv) exactly as described above led to ca. 50% yield of the desired compound 9 c .

7,9-Dibenzyl-7,9-diaza-4-(2-hydroxyethyl)-2-oxabicyclo-[3.2.2]nonane-6,8-dione ($16, \mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$). To a stirred solution of diol $15^{16}(670 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) was added silver perchlorate ($566 \mathrm{mg}, 2.73 \mathrm{mmol}, 2.0$ equiv) at $25^{\circ} \mathrm{C}$. The mixture was allowed to stir 40 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N NaOH , and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by PTLC silica gel (eluted with $4 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $510 \mathrm{mg}(99 \%)$ of the bicyclic alcohol 16 (oil): ${ }^{1} \mathrm{H}$ NMR (100 MHz) ($\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) ~ \delta 1.26-1.92$ ($3 \mathrm{H}, \mathrm{m}$), 3.18-3.97 ($5 \mathrm{H}, \mathrm{m}$), 4.36-4.89 ($4 \mathrm{H}, \mathrm{m}$), $5.12(1 \mathrm{H}, \mathrm{s})$, 7.30 ($10 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3480,1680,1455,1270,1220,1065$, $750 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 380\left(\mathrm{M}^{+}, 1.0\right)$, $292(3.0)$, 252 (1.1), 91 (49.5).

7,9-Dibenzyl-7,9-diaza-4-vinyl-2-oxabicyclo[3.2.2]nonane-6,8-dione (9d, $\mathbf{R}_{1}=\mathbf{C H}_{2} \mathbf{P h} ; \mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{H} ; \mathbf{R}_{4}=\mathbf{C H}=\mathbf{C H}_{2}$). To a stirred solution of $16\left(\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}\right)(110 \mathrm{mg}, 0.289 \mathrm{mmol}, 1.0$ equiv) in THF (3 mL) at $0^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(81 \mu \mathrm{~L}, 0.58 \mathrm{mmol}$, 2.0 equiv) and methanesulfonyl chloride ($25 \mu \mathrm{~L}, 0.31 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred for 30 min , diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered, evaporated, and purified by PTLC silica gel (eluted with 33% hexanes in EtOAc) to afford 130 mg (98.7%) of the corresponding mesylate 9 ($\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{CH}_{3}$): ${ }^{1} \mathrm{H}$ NMR (100 MHz) ($\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) δ $1.33-1.92(3 \mathrm{H}, \mathrm{m}), 2.96(3 \mathrm{H}, \mathrm{s}), 3.24-4.18(5 \mathrm{H}, \mathrm{m}), 4.36-4.87$ ($4 \mathrm{H}, \mathrm{m}$), 5.11 ($1 \mathrm{H}, \mathrm{s}$), $7.27-7.33$ ($10 \mathrm{H}, \mathrm{m}$); IR (NaCl, neat) 1695 , $1450,1355,1170,950,915,725 \mathrm{~cm}^{-1}$.
To a stirred suspension of diphenyl diselenide ($182 \mathrm{mg}, 0.58$ mmol, 1.1 equiv) in $\mathrm{EtOH}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(46$ $\mathrm{mg}, 1.22 \mathrm{mmol}, 2.3$ equiv). After the mixture was stirred for 10 \min at $0^{\circ} \mathrm{C}$, a solution of the mesylate obtained as above (240 $\mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 1.5 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into brine, and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford the crude selenide (310 mg), which was directly used for the next step without further purification. Treatment of this material in THF (5 mL) with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.16 \mathrm{~mL}$, 5.3 $\mathrm{mmol}, 10$ equiv) at $0^{\circ} \mathrm{C}(1 \mathrm{~min}$ addition) was followed by warming the reaction to ambient temperature. The mixture was stirred 29 h at room temperature, refluxed for 1.5 h , cooled, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N HCl , and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and purified by PTLC silica gel (eluted with 33% EtOAc in hexanes) to afford 71 mg (37.2%) of the olefin 9d as colorless needles: mp $127.5-128.5^{\circ} \mathrm{C}$ (recryst $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (360 MHz) $\left(\mathrm{CDCl}_{3}, \mathrm{CHCl}_{3}\right) \delta 2.42-2.50$ $(1 \mathrm{H}, \mathrm{m}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=12.87 \mathrm{~Hz}, J=12.87 \mathrm{~Hz}), 4.02(1 \mathrm{H}$, dd, $J=12.87 \mathrm{~Hz}, J=12.87 \mathrm{~Hz}$), $4.10(1 \mathrm{H}, \mathrm{d}, J=2.77 \mathrm{~Hz}), 4.70$ $(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=14.50 \mathrm{~Hz}), 4.73(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=14.75 \mathrm{~Hz})$, $5.02(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=14.50 \mathrm{~Hz}), 5.07\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB}\right.$ q, $J=14.75$ Hz), $5.16(1 \mathrm{H}, \mathrm{dd}, J=0.82 \mathrm{~Hz}, J=17.54 \mathrm{~Hz}$), $5.33(1 \mathrm{H}, \mathrm{d}, J$ $=9.94 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{s}), 5.76(1 \mathrm{H}$, ddd, $J=7.55 \mathrm{~Hz}, J=9.94$ $\mathrm{Hz}, J=17.54 \mathrm{~Hz}), 7.02-7.40(10 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) 1690,1500 , $1450,1215,1075,750 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 362\left(\mathrm{M}^{+}, 8.2\right)$, 332 (2.2), 292 (2.3), 271 (2.3), 264 (2.2), 91 (100).
7,9-Dibenzyl-7,9-diaza-4-(hydroxymethyl)-2-oxabicyclo-[3.2.2]nonane-6,8-dione ($17, \mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$). A stream of ozone was bubbled through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ solution of $9 \mathrm{~d}\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}\right.$, $\left.\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{CH}=\mathrm{CH}_{2}\right),(47 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) for 100 min . The mixture was allowed to come to room temperature, evaporated, THF (3 mL) was added, and the mixture was cooled to $0^{\circ} \mathrm{C}$. To this cold, stirred solution was added LAH ($4 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 0.75$ equiv). The mixture was stirred for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N HCl , and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and purified by PTLC silica gel (eluted with 9% hexanes in EtOAc) to afford $11 \mathrm{mg}(23 \%)$ of alcohol 17: mp $161-162^{\circ} \mathrm{C}$ (recryst $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes). ${ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.74-2.00(1 \mathrm{H}, \mathrm{m}), 3.33-4.11(5 \mathrm{H}$, $\mathrm{m}), 4.35-4.89(4 \mathrm{H}, \mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{s}), 7.31(10 \mathrm{H}, \mathrm{s})$; IR (NaCl , neat) $3440,1695,1500,1455,1285,1265,1070,905,730 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 366\left(\mathrm{M}^{+}, 7.1\right), 336$ (1.1), 292 (12.4), 275 (2.4), 91 (100).

The diastereomer 17 (epimeric at C-4) was obtained from the diastereomeric bicyclic alcohol 16 (epimeric at C-4) in 53% overall yield following the same procedures described above. Spectroscopic and analytical data is as follows for this series.
4-epi-17: mp 128-128.5 ${ }^{\circ} \mathrm{C}$ (recryst $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (270 MHz) ($\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.665-1.695(1 \mathrm{H}, \mathrm{m})$, $2.298-2.425(1 \mathrm{H}, \mathrm{m}), 3.209\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=10.751 \mathrm{~Hz}, J_{2}=7.951\right.$ Hz), $3.397\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=10.751 \mathrm{~Hz}, J_{2}=5.843 \mathrm{~Hz}\right.$), $3.665(1 \mathrm{H}$, dd, $\left.J_{1}=12.743 \mathrm{~Hz}, J_{2}=9.122 \mathrm{~Hz}\right), 3.853\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=12.743\right.$ $\left.\mathrm{Hz}, J_{2}=5.205 \mathrm{~Hz}\right), 4.110(1 \mathrm{H}, \mathrm{d}, J=1.512 \mathrm{~Hz}), 4.344\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ $\mathrm{q}, ~ J=15.042 \mathrm{~Hz}$), $4.370\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=14.726 \mathrm{~Hz}\right.$), 4.871 (1 $\mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=15.042 \mathrm{~Hz}), 4.993(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=14.726 \mathrm{~Hz})$, 5.091 ($1 \mathrm{H}, \mathrm{s}$), 7.138-7.474 ($10 \mathrm{H}, \mathrm{m}$) IR (NaCl , neat) 3430, 3030, $1685,1495,1450,1355,1260,1160,1060,945,725,690 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-epi-7,9-Dibenzyl-7,9-diaza-4-vinyl-2-oxabicyclo[3.2.2]-nonane-6,8-dione (9, $\mathbf{R}_{1}=\mathbf{C H}_{2} \mathbf{P h} ; \mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{H} ; \mathbf{R}_{4}=\mathbf{C H}=$ $\mathbf{C H}_{2}$): mp $120-120.5^{\circ} \mathrm{C}$ (recryst $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane); ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 2.869-2.902(1 \mathrm{H}, \mathrm{m}), 3.465-3.899$ $(2 \mathrm{H}, \mathrm{m}), 3.918(1 \mathrm{H}, \mathrm{d}, J=1.416 \mathrm{~Hz}), 4.217\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=\right.$ 14.889 Hz), $4.336\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB} \mathrm{q}, J=14.990 \mathrm{~Hz}\right), 4.891(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=14.889 \mathrm{~Hz}$), $5.074\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=14.990 \mathrm{~Hz}\right.$), $5.090(1$ H, s), 5.133-5.408 ($3 \mathrm{H}, \mathrm{m}$), 7.184-7.346 ($10 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $3060,3030,1680,1495,1450,1425,1270,1165,1075,1060,910$ $725,690 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8,10-Diaza-5-methylene-2-oxabicyclo[4.2.2]decane-7,9-dione ($10 \mathrm{~b}, \mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{H}$). To a stirred solution of $10^{16}\left(\mathrm{R}_{1}=\right.$ $\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$) ($14 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0$ equiv) in MeCN (0.1 mL) was added CAN ($72.75 \mathrm{mg}, 0.133 \mathrm{mmol}, 4.0$ equiv). The mixture was stirred for 1.2 h , diluted with MeOH (1 mL), and separated by PTLC silica gel (eluted with $20 \% \mathrm{MeOH}$ in CHCl_{3}) to afford $5.5 \mathrm{mg}(91 \%)$ of the fully deprotected bicyclic piperazinedione 10 b as an amorphous solid plus 1 mg (ca. 8%) of a mixture of mono- N-(p-methoxybenzyl)piperazinediones (10) ${ }^{1} \mathrm{H}$ NMR (270 MHz) ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{2} \mathrm{SO}\right) \delta 2.35-2.60(2 \mathrm{H}, \mathrm{m})$, $3.78(1 \mathrm{H}, \mathrm{dd}, J=1.46 \mathrm{~Hz}, J=6.84 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dd}, J=1.46$ $\mathrm{Hz}, J=6.84 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{s}), 5.00(1 \mathrm{H}, \mathrm{s}), 5.06$ ($1 \mathrm{H}, \mathrm{s}$), 8.68 ($1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch), 9.02 ($1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch); IR (NaCl , neat) $3300-3200,1680,1620,1250 \mathrm{~cm}^{-1}$.

8,10-Diaza-5-methylene-6-hydroxy-2-oxabicyclo[4.2.2]de-cane-7,9-dione (10d, $\mathbf{R}_{1}=\mathbf{H} ; \mathbf{R}_{2}=\mathbf{O H} ; \mathbf{R}_{3}=\mathbf{H}$). To a MeCN (0.1 mL) solution of $10^{16}\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\right.$ H) ($4.0 \mathrm{mg}, 0.009 \mathrm{mmol}, 1.0$ equiv) was added $\mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{~mL}$) followed by CAN ($22.53 \mathrm{mg}, 0.041 \mathrm{mmol}, 4.5$ equiv). The reaction was stirred for 1.2 h at room temperature, diluted with MeOH (1 mL), and separated by PTLC silica gel (eluted with 5:1 $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ to afford $1.2 \mathrm{mg}(66.4 \%)$ of the fully deprotected amide 10d plus trace amounts of the monodeprotected mixture: mp $168-169{ }^{\circ} \mathrm{C}$ (recryst acetone/THF); ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{2} \mathrm{SO}\right) \delta 2.50-2.70(2 \mathrm{H}, \mathrm{m}), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{gem}}=\right.$ $\left.9.10 \mathrm{~Hz}, J_{\text {vic }}=2.5 \mathrm{~Hz}\right), 3.78\left(1 \mathrm{H}, \mathrm{dd}, J_{\text {vic }}=2.5 \mathrm{~Hz}, J_{\mathrm{gem}}=11.1\right.$ $\mathrm{Hz}), 6.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 8.89\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch), 9.14 (1 $\mathrm{H}, \mathrm{br} s, \mathrm{D}_{2} \mathrm{O}$ exch) IR (NaCl , neat) $3600-3200,1690,1620,1250$ cm^{-1}.
7,9-Dibenzyl-7,9-diaza-4-methylene-2-oxabicyclo[3.2.2]-nonane-6,8-dione ($18, \mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$). A stirred solution of 17 ($18.6 \mathrm{mg}, 0.019 \mathrm{mmol}, 1.0$ equiv) was treated with methanesulfonyl chloride $(12 \mu \mathrm{~L})$ and $\mathrm{Et}_{3} \mathrm{~N}(29 \mu \mathrm{~L})$ in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was filtered and evaporated, 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) ($6 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$, 2.0 equiv) in toluene (1 mL) was added, and the mixture was heated at reflux for 17 h . After cooling to room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into 0.1 N HCl solution, and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and separated on PTLC silica gel (eluted with 50% EtOAc in hexanes) to afford $2.5 \mathrm{mg}(38.5 \%)$ of olefin $18: \mathrm{mp} 185-185.5^{\circ} \mathrm{C}$ (recryst $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (270 MHz) (CDCl_{3}, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 4.163(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=14.062 \mathrm{~Hz}), 4.335(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=14.062 \mathrm{~Hz}$), $4.363(1 \mathrm{H}, \mathrm{s}), 4.385(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=15.036$ Hz), $4.486\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ q,$\left.J=14.741 \mathrm{~Hz}\right), 4.778\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}\right.$, $J=14.741 \mathrm{~Hz}), 4.483(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=15.036 \mathrm{~Hz}), 5.069(1 \mathrm{H}$, s), $5.106(1 \mathrm{H}, \mathrm{s}), 5.117(1 \mathrm{H}, \mathrm{s}), 7.200-7.361(10 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $1695,1450,1215,1055,755 \mathrm{~cm}^{-1}$; mass spectrum, $m / e 348$ $\left(\mathrm{M}^{+}, 2.5\right), 261$ (1.1), 243 (1.8), 91 (100). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}$, H, N.
An improved procedure for the preparation of 18 was found by converting the mesylate derived from 17 to the selenide followed by $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation and elimination (THF, reflux, 12 h) exactly as described above for preparation of the vinyl derivative from 16 (77.4% overall yield from 17).
8,10-Dibenzyl-8,10-diaza-6-hydroxy-1-[2^{\prime}-methyl-1'-hydroxy- $2^{\prime}, 3^{\prime}$-(isopropylidenedioxy) propyl]-2-oxabicyclo-[4.2.2]decane-7,9-dione (12a, $\mathbf{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathbf{R}_{2}=\mathbf{O H} ; \mathbf{R}_{3}, \mathbf{R}_{4}=$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. To a stirred solution of alcohol $8 \mathrm{j}\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}_{2}\right.$ $=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$) ($135 \mathrm{mg}, 0.368 \mathrm{mmol}, 1.0$ equiv) in THF (5 mL) at $-100^{\circ} \mathrm{C}$ was added n-BuLi ($0.88 \mathrm{mmol}, 2.4$ equiv) dropwise. After the mixture was stirred for 15 min at $-100^{\circ} \mathrm{C}, 2,2,4$-tri-methyl-1,3-dioxolane-4-carboxaldehyde ($212 \mathrm{mg}, 1.47 \mathrm{mmol}, 4$ equiv) was added. The mixture was allowed to stir 15 min at -100 ${ }^{\circ} \mathrm{C}$ and 30 min at room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured
into saturated NaCl (aqueous), and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated, and the residue was separated on PTLC silica gel (eluted with 50% ether in hexanes) to afford the diol 12 a ($60.3 \mathrm{mg}, 32.3 \%$ major diastereomer or 46.5% based on recovered $8 \mathbf{j}$; plus 15.3 mg of a diastereomer, 8.2% or 12% based on recovered $8 \mathbf{j}$) plus unreacted $8 \mathbf{j}(41.3 \mathrm{mg}, 30.6 \%$).
Major diastereomer 12a: mp 168-169 ${ }^{\circ} \mathrm{C}$ (recryst $\mathrm{Et}_{2} \mathrm{O} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (360 MHz) ($\mathrm{CDCl}_{3}, \mathrm{CHCl}_{3}$) $\delta 0.738(3 \mathrm{H}, \mathrm{s})$, $1.140-1.367(2 \mathrm{H}, \mathrm{m}), 1.330(3 \mathrm{H}, \mathrm{s}), 1.337(3 \mathrm{H}, \mathrm{s}), 1.683-1.767$ ($1 \mathrm{H}, \mathrm{m}$), 2.033-2.133 ($1 \mathrm{H}, \mathrm{m}$), 2.721-2.786 ($1 \mathrm{H}, \mathrm{m}$), 3.449-3.518 $(1 \mathrm{H}, \mathrm{m}), 3.748(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=9.16 \mathrm{~Hz}), 4.097(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=9.16 \mathrm{~Hz}), 4.603(1 \mathrm{H}, \mathrm{d}, J=9.97 \mathrm{~Hz}), 4.611(2 \mathrm{H}, \mathrm{s}), 4.693$ ($1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=15.19 \mathrm{~Hz}$), $4.915\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch), 5.145 (1 $\left.\mathrm{H},{ }^{1} / 2 \mathrm{AB} \mathrm{q}, J=15.19 \mathrm{~Hz}\right), 6.505\left(1 \mathrm{H}, \mathrm{d}, J=9.97 \mathrm{~Hz}, \mathrm{D}_{2} 0\right.$ exch $)$, $7.20-7.60$ ($10 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) 3400, 3060, 3030, 1665, 1605, $1500,1435,1405,1380,1250,1205,1075,905,850,730,700 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Minor diastereomer 12a: ${ }^{1} \mathrm{H}$ NMR (100 MHz) (CDCl_{3}, CHCl_{3}) $\delta 1.19-2.16(13 \mathrm{H}, \mathrm{m}), 2.78-3.53(2 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{d}$, $J=4.39 \mathrm{~Hz}), 3.65(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=8.54 \mathrm{~Hz}), 4.15(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ $\mathrm{q}, J=8.54 \mathrm{~Hz}), 4.65(2 \mathrm{H}, \mathrm{s}), 4.79\left(1 \mathrm{H}, \mathrm{d}, J=4.39 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $4.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 4.94(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=15.13 \mathrm{~Hz}), 5.42$ ($1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB} \mathrm{q}, J=15.13 \mathrm{~Hz}$), $7.20-7.59(10 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3420,3060,3030,1660,1605,1495,1455,1400,1375,1325,1255$, $1100,1055,905,725 \mathrm{~cm}^{-1}$. (Note: The minor diastereomer was not submitted for bioassay.)
8,10-Bis (p-methoxybenzyl)-8,10-diaza-1-[2^{\prime}-methyl-1'-hydroxy- $2^{\prime}, 3^{\prime}$-(isopropylidenedioxy) propyl]-2-oxabicyclo-[4.2.2]decane-7,9-dione (19, $\mathbf{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}$, $\left.\mathbf{R}_{4}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. To a stirred, $-78{ }^{\circ} \mathrm{C}$ solution of $8 \mathrm{c}\left(\mathrm{R}_{1}=\right.$ $\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$) ($101 \mathrm{mg}, 0.246 \mathrm{mmol}, 1.0$ equiv) containing HMPA ($0.21 \mathrm{~mL}, 1.23 \mathrm{mmol}, 5.0$ equiv) in THF (4 mL) was added a solution of LDA ($0.27 \mathrm{mmol}, 1.1$ equiv) in THF (2 mL). The mixture stirred for 42 min at $-78{ }^{\circ} \mathrm{C}$ and chlorotrimethylsilane ($47 \mu \mathrm{~L}, 0.369 \mathrm{mmol}, 1.5$ equiv) was added. The mixture was allowed to come to room temperature over a $45-\mathrm{min}$ period and was recooled to $-78^{\circ} \mathrm{C}$. A solution of LDA ($0.61 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{THF}(2 \mathrm{~mL}$) was added and the solution stirred for 20 min at $-78{ }^{\circ} \mathrm{C}$ and (\pm)-2,2,4-trimethyl-1,3-di-oxolane-4-carboxaldehyde ($177 \mathrm{mg}, 1.23 \mathrm{mmol}, 5$ equiv) was added dropwise. The mixture was allowed to come to room temperature. After stirring 35 min at room temperature, tetra- n-butylammonium fluoride trihydrate ($466 \mathrm{mg}, 1.47 \mathrm{mmol}, 6$ equiv) was added in one portion. After stirring 30 min at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into brine, and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and separated on a silica gel column (50 g of silica gel, eluted with $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford alcohol 19 ($13 \mathrm{mg}, 10 \%$ or 12% based on recovered starting material); other isomers ($26.5 \mathrm{mg}, 19.5 \%$ or 24.2% based on recovered starting material) and starting material ($19.5 \mathrm{mg}, 19.3 \%$) were also obtained. ${ }^{1} \mathrm{H}$ NMR (270 MHz) (CDCl_{3}, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.199(3 \mathrm{H}, \mathrm{s}), 1.370(3 \mathrm{H}, \mathrm{s}), 1.409(3 \mathrm{H}, \mathrm{s}), 1.748-1.886$ ($2 \mathrm{H}, \mathrm{m}$), 1.966-2.071 ($2 \mathrm{H}, \mathrm{m}$), 2.778-2.869 ($1 \mathrm{H}, \mathrm{m}$), 3.483-3.574 ($1 \mathrm{H}, \mathrm{m}$), $3.781(3 \mathrm{H}, \mathrm{s}), 3.807(3 \mathrm{H}, \mathrm{s}), 3.875-4.999(5 \mathrm{H}, \mathrm{m}), 4.689$ $\left(1 \mathrm{H},{ }^{1}{ }_{2} \mathrm{AB}\right.$ q, $J=15.756 \mathrm{~Hz}$), $6.655(1 \mathrm{H}, \mathrm{d}, J=9.571 \mathrm{~Hz}$), 4.998 ($1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=15.756 \mathrm{~Hz}$), $6.655(1 \mathrm{H}, \mathrm{d}, J=9.571 \mathrm{~Hz}$), $6.753-6.889(4 \mathrm{H}, \mathrm{m}), 7.179-7.266(2 \mathrm{H}, \mathrm{m}), 7.486-7.538(2 \mathrm{H}, \mathrm{m})$; IR (NaCl , neat) $3320,3050,1670,1610,1515,1435,1405,1300$, $1245,1175,1105,1070,1030,905,730 \mathrm{~cm}^{-1}$; mass spectrum, m / e 544 ($\mathrm{M}^{+}, 1.4$), 539 (1.1), 497 (4.4), 441 (5.1), 121 (68.4), 59 (100).

8,10-Diaza-(2^{\prime}-methyl-1' $\mathbf{2}^{\prime}, 3^{\prime}$ 'trihydroxypropyl)-2-oxabi-cyclo[4.2.2]decane-7,9-dione (12b, $\mathbf{R}_{1}=\mathbf{R}_{2}=\mathbf{R}_{3}=\mathbf{R}_{4}=\mathbf{H}$). To a stirred, room-temperature solution of alcohol 19 obtained above ($10 \mathrm{mg}, 0.018 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DMAP ($24 \mathrm{mg}, 0.2 \mathrm{mmol}, 11$ equiv). After the mixture was stirred for 10 min , trifluoroacetic anhydride ($25 \mu \mathrm{~L}, 0.18 \mathrm{mmol}, 10$ equiv) was added. The mixture was allowed to stir 2 h and directly separated on PTLC silica gel (eluted with 45% hexanes in EtOAc) to afford the $1^{\prime}-O$-trifluoroacetate (oil) ($8.4 \mathrm{mg}, 72 \%$ or 90% based on recovered starting material) and starting material ($2 \mathrm{mg}, 20 \%$): ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.599(3 \mathrm{H}, \mathrm{s}), 1.184(3 \mathrm{H}$, $\mathrm{s}), 1.211(3 \mathrm{H}, \mathrm{s}), 1.603-2.206(4 \mathrm{H}, \mathrm{m}), 3.186-3.288(1 \mathrm{H}, \mathrm{m}), 3.524$ $(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=9.633 \mathrm{~Hz}), 3.791(3 \mathrm{H}, \mathrm{s}), 3.804(3 \mathrm{H}, \mathrm{s})$, $3.810-5.051(6 \mathrm{H}, \mathrm{m}), 4.396(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=9.633 \mathrm{~Hz}), 6.145$
($1 \mathrm{H}, \mathrm{s}$), 6.775-7.595 ($8 \mathrm{H}, \mathrm{m}$); IR (NaCl , neat) $1785,1680,1610$, $1510,1360,1300,1245,1210,1170,1145,1025,725 \mathrm{~cm}^{-1}$.

To a stirred, room-temperature suspension of the trifluoroacetate ($8.2 \mathrm{mg}, 0.012 \mathrm{mmol}, 1$ equiv) in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL}$, $2: 1 \mathrm{v} / \mathrm{v}$) was added CAN ($41 \mathrm{mg}, 0.072 \mathrm{mmol}, 6$ equiv) in one portion. The mixture was stirred for 2 h at room temperature and directly separated on PTLC silica gel (eluted with $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford triol 12 b ($1.5 \mathrm{mg}, 45.5 \%$) as an amorphous solid: mp $264{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR (270 MHz) ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.155(3 \mathrm{H}, \mathrm{s}), 1.643-1.783(2 \mathrm{H}, \mathrm{m}), 1.860-1.968(2 \mathrm{H}, \mathrm{m})$, $3.231-3.814(5 \mathrm{H}, \mathrm{m}), 3.843(1 \mathrm{H}, \mathrm{d}, J=7.714 \mathrm{~Hz}), 4.474(1 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch), $5.166\left(1 \mathrm{H}, \mathrm{d}, J=7.714 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 5.176$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch), $8.214\left(1 \mathrm{H}, \mathrm{d}, J=3.466 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch), 8.765 ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch); IR (NaCl , neat) $3340,1670,1600,1555,1540$, $1415,1055,1020 \mathrm{~cm}^{-1}$.

8,10-Bis(p-methoxybenzyl)-8,10-diaza-6-hydroxy-1-[2^{\prime} -methyl-1'-hydroxy-2', 3^{\prime}-(isopropylidenedioxy)propyl]-2-ox-abicyclo[4.2.2]decane-7,9-dione (20, $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}$-p- $\mathrm{OCH}_{3} ; \mathbf{R}_{2}$ $\left.=\mathbf{O H} ; \mathbf{R}_{3}, \mathbf{R}_{4}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. To a stirred solution of alcohol $8\left(\mathrm{R}_{1}\right.$ $=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$) ($41 \mathrm{mg}, 0.096 \mathrm{mmol}$, 1 equiv) in THF (2 mL) at $-100^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(0.14 \mathrm{~mL}$, $0.288 \mathrm{mmol}, 3.0$ equiv). After stirring of the mixture for 17 min at $-100^{\circ} \mathrm{C}, 2,2,4$-trimethyl-1,3-dioxolane-4-carboxaldehyde (28 $\mu \mathrm{L}, 0.192 \mathrm{mmol}, 2.0$ equiv) was added and the mixture continued to stir at $-100^{\circ} \mathrm{C}$ for 42 min . The cooling bath was removed, allowing the temperature to reach ambient over a $40-\mathrm{min}$ period. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, poured into saturated NaCl solution, and thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, evaporated, and separated on PTLC silica gel (eluted with 10% hexanes in $\mathrm{Et}_{2} \mathrm{O}$) to afford $22 \mathrm{mg}(41 \%)$ of diol 20 and 12.2 mg (22.6%) of a diastereomer.

Major diastereomer 20: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 0.806(3 \mathrm{H}, \mathrm{s}), 1.352(3 \mathrm{H}, \mathrm{s}), 1.364(3 \mathrm{H}, \mathrm{s}), 1.640-1.767(2 \mathrm{H}$, $\mathrm{m}), 1.850-2.105(2 \mathrm{H}, \mathrm{m}), 2.755-2.835(1 \mathrm{H}, \mathrm{m}), 3.490-3.585(1$ $\mathrm{H}, \mathrm{m}), 3.733\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ q, $\left.J=8.37 \mathrm{~Hz}\right), 3.783(6 \mathrm{H}, \mathrm{s}), 4.126$ $\left(1 \mathrm{H}, 1 /{ }_{2} \mathrm{AB}\right.$ q, $\left.J=8.37 \mathrm{~Hz}\right), 4.586(2 \mathrm{H}, \mathrm{s}), 4.606(1 \mathrm{H}, \mathrm{d}, J=10$ $\mathrm{Hz}), 4.642\left(1 \mathrm{H},{ }^{1} /{ }_{2} \mathrm{AB}\right.$ q, $\left.J=15.31 \mathrm{~Hz}\right), 4.969(1 \mathrm{H}, \mathrm{s}), 5.091(1$ $\mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=15.31 \mathrm{~Hz}), 6.621(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 6.810(4$ $\mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.430(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.507(2 \mathrm{H}, \mathrm{d}, J=$ 8.6 Hz); IR (NaCl , neat) $3370,3300,3060,1655,1615,1515,1380$, $1250,1175,1105,1070,1035,910,740 \mathrm{~cm}^{-1}$; mass spectrum, m / e $570\left(\mathrm{M}^{+}, 0.4\right), 451$ (1.7), 426 (1.1), 408 (4.6), 392 (0.6), 340 (3.4), 287 (1.5), 272 (3.6), 233 (3), 219 (4.9), 207 (2.1), 192 (2.6), 162 (8.4), 148 (3.3), 136 (14.), 121 (100), 115 (23.4).

Minor diastereomer 20: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 1.310(3 \mathrm{H}, \mathrm{s}), 1.391(3 \mathrm{H}, \mathrm{s}), 1.405(3 \mathrm{H}, \mathrm{s}), 1.608-1.775(2 \mathrm{H}$, m), 1.880-2.085 ($2 \mathrm{H}, \mathrm{s}$), $2.810-2.915(1 \mathrm{H}, \mathrm{m}), 3.182$ ($1 \mathrm{H}, \mathrm{d}, J$ $=4.26), 3.41-3.375(2 \mathrm{H}, \mathrm{m}), 3.675(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=8.86 \mathrm{~Hz})$, $3.708(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=8.58 \mathrm{~Hz}), 3.753(3 \mathrm{H}, \mathrm{s}), 3.761(3 \mathrm{H}, \mathrm{s})$, $3.957(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=8.58 \mathrm{~Hz}), 4.170(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=8.86$ $\mathrm{Hz}), 4.604(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=13.2 \mathrm{~Hz}), 4.948(1 \mathrm{H}, \mathrm{s}), 5.405(1$ $\mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=13.2 \mathrm{~Hz}), 6.75-6.821(4 \mathrm{H}, \mathrm{m}), 7.365-7.486(4 \mathrm{H}$, $\mathrm{m})$, IR (NaCl , neat) $3430,3070,1665,1615,1520,1380,1245,1175$, $1110,1055,1035,910,730 \mathrm{~cm}^{-1}$.

8,10-Diaza-6-hydroxy-(2^{\prime}-methyl- $1^{\prime}, 2^{\prime}, 3^{\prime}$-trihydroxy-propyl)-2-oxabicyclo[4.2.2]decane-7,9-dione (12c, $\mathbf{R}_{1}=\mathbf{R}_{3}=$ $\left.\mathbf{R}_{4}=\mathbf{H} ; \mathbf{R}_{2}=\mathbf{O H}\right)$. To a stirred, room-temperature solution of diol $20\left(\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{Ph}-p-\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}, \mathrm{R}_{4}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)(87$ $\mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added 4-(dimethylamino) pyridine ($205 \mathrm{mg}, 1.67 \mathrm{mmol}, 11$ equiv). After 15 min , tifluoroacetic anhydride ($0.22 \mathrm{~mL}, 1.5 \mathrm{mmol}, 10$ equiv) was added. The reaction mixture was stirred at room temperature
for 35 min , evaporated, and separated on PTLC silica gel (eluted with 25% hexane in $\mathrm{Et}_{2} \mathrm{O}$) to afford the 1^{\prime} - O-trifluoroacetate (25 $\mathrm{mg}, 25 \%$) and $1^{\prime}, 6$-bis(O-trifluoroacetate) ($57 \mathrm{mg}, 50 \%$).
1^{\prime} - O-Trifluoroacetate: ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 0.359(3 \mathrm{H}, \mathrm{s}), 1.127(3 \mathrm{H}, \mathrm{s}), 1.146(3 \mathrm{H}, \mathrm{s}), 1.506-1.726(2 \mathrm{H}$, m), 1.829-2.028 ($1 \mathrm{H}, \mathrm{m}$), 2.157-2.258 ($1 \mathrm{H}, \mathrm{m}$), $3.047\left(1 \mathrm{H}, 1 /{ }_{2} \mathrm{AB}\right.$ $\mathrm{q}, ~ J=9.433 \mathrm{~Hz}$), 3.154-3.234 ($1 \mathrm{H}, \mathrm{m}$), 3.709-3.885 ($1 \mathrm{H}, \mathrm{m}$), 3.772 $(3 \mathrm{H}, \mathrm{s}), 3.791(3 \mathrm{H}, \mathrm{s}), 4.221(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=9.433 \mathrm{~Hz}), 4.516$ $\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB}\right.$ q, $J=13.237 \mathrm{~Hz}$), $4.582\left(1 \mathrm{H},{ }^{1} / 2 \mathrm{AB} q, J=14.804\right.$ $\mathrm{Hz}), 4.597\left(1 \mathrm{H}, 1 /{ }_{2} \mathrm{AB} \mathrm{q}, J=13.327 \mathrm{~Hz}\right), 4.712\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $5.024(1 \mathrm{H}, 1 / 2 \mathrm{AB} \mathrm{q}, J=14.804 \mathrm{~Hz}), 6.074(1 \mathrm{H}, \mathrm{s}), 6.784-6.884$ ($4 \mathrm{H}, \mathrm{m}$), 7.381-7.645 (4 H, m); IR (NaCl, neat) $3350,1785,1655$, $1610,1510,1365,1245,1210,1165,1145,1030 \mathrm{~cm}^{-1}$.

Exhaustive reacetylation of this compound produced the $1^{\prime}, 6$-bis (O-trifluoroacetate).
$1^{\prime}, 6-\mathrm{Bis}\left(O\right.$-trifluoroacetate): ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.360(3 \mathrm{H}, \mathrm{s}), 1.125(3 \mathrm{H}, \mathrm{s}), 1.144(3 \mathrm{H}, \mathrm{s}), 1.497-1.703$ ($2 \mathrm{H}, \mathrm{m}$), 1.937-2.071 ($1 \mathrm{H}, \mathrm{m}$), 2.163-2.251 (1 H, m), 3.047 (1 H , $1 / 2 \mathrm{AB} \mathrm{q}, J=9.533 \mathrm{~Hz}), 3.134-3.243(1 \mathrm{H}, \mathrm{m}), 3.529-3.614(1 \mathrm{H}$, m), $3.769(3 \mathrm{H}, \mathrm{s}), 3.788(3 \mathrm{H}, \mathrm{s}), 4.221(1 \mathrm{H}, 1 / 2 \mathrm{AB}$ q, $J=9.533$ $\mathrm{Hz}), 4.497-5.050(4 \mathrm{H}, \mathrm{m}), 6.073(1 \mathrm{H}, \mathrm{s}), 6.691(4 \mathrm{H}, \mathrm{m})$, 7.362-7.643 (4 H, m); IR (NaCl , neat) $1785,1655,1605,1505,1455$, $1310,1240,1205,1160,1100,1025 \mathrm{~cm}^{-1}$.

To a stirred, room-temperature suspension of the $1^{\prime}, 6-\operatorname{bis}(0$ trifluoroacetate) obtained above ($18 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) in 0.5 mL of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(2 / 1, \mathrm{v} / \mathrm{v})$ was added ceric ammonium nitrate ($89 \mathrm{mg}, 0.162 \mathrm{mmol}, 6$ equiv). The reaction mixture was stirred at room temperature for 2 h , evaporated, and separated twice on PTLC silica gel (1 eluted with $25 \% \mathrm{EtOAc}$ in $\mathrm{Et}_{2} \mathrm{O} ; 2$ eluted with $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the tetrol 12c (3.7 mg., 47.4%) as a waxy solid. The same tetrol could also be obtained from the bis(O-trifluoroacetate) as described below.

To a stirred, room temperature suspension of the bisacetate ($19.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 1$ equiv) in 0.5 mL of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(2 / 1$, v / v) was added ceric ammonium nitrate ($84 \mathrm{mg}, 0.15 \mathrm{mmol}, 6$ equiv). The reaction mixture was stirred at room temperature for 2 h , evaporated, and separated twice on PTLC silica gel (1 eluted with $25 \% \mathrm{EtOAc}$ in $\mathrm{Et}_{2} \mathrm{O}$; 2 eluted with $20 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $3 \mathrm{mg}(41.4 \%)$ of tetrol 12 c : ${ }^{1} \mathrm{H}$ NMR (270 MHz) $\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{Me}_{4} \mathrm{Si}$) $\delta 1.151(3 \mathrm{H}, \mathrm{s}), 1.617-1.757(2 \mathrm{H}, \mathrm{m})$, 1.803-2.029 (2 H, m), 3.343-3.531 (2 H, m), 3.671-3.777 ($2 \mathrm{H}, \mathrm{m}$), $3.850(1 \mathrm{H}, \mathrm{d}, J=7.045 \mathrm{~Hz}), 4.430-4.452\left(1 \mathrm{H}, \mathrm{m}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 5.182$ ($1 \mathrm{H}, \mathrm{d}, J=7.045 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exch), 5.199 ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch), 6.534 (1 H, br s, $\mathrm{D}_{2} \mathrm{O}$ exch), $8.542\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 8.839\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch); IR (NaCl , neat) $3320,1670,1390,1115,1065,1015 \mathrm{~cm}^{-1}$.

Acknowledgment is made to the National Institutes of Health (Grant 1R01 AIGM 18657), the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Colorado State University Biomedical Research Support (Grant 537276) for financial support of this work. NMR measurements at 360 MHz were obtained at the Colorado State University Regional NMR Center, funded by National Science Foundation Grant CHE 78-18581. We thank Fujisawa Pharmaceutical Co. for the generous gift of natural bicozamycin. We are especially indebted to Drs. David L. Pruess and Hans Maag of Hoffman-La Roche, Inc., for performing the antimicrobial tests. High-resolution mass spectra were obtained at the Midwest Center for Mass Spectrometry, a National Science Foundation Regional Instrumentation Facility (Grant No. CHE 8211164).

[^0]: ${ }^{\dagger}$ NIH Research Career Development Awardee 1984－1989．

[^1]: （1）（a）Miyoshi，T．；Miyairi，N．；Aoki，H．；Kohsaka，M．；Sakai，H．； Imanaka，H．J．Antibiot．1972，25，569．（b）Kamiya，T．；Maeno， S．；Hashimoto，M．；Mine，Y．Ibid．1972，25，576．（c）Nishida， M．；Mine，Y．；Matsubara，T．Ibid．1972，25，582．（d）Nishida， M．；Mine，Y．；Matsubara，T．；Goto，S．；Kuwahara，S．Ibid．1972， 25，594．（e）Miyamura，S．；Ogasawara，N．；Otsuka，H．；Niwa－ yama，S．；Tanaka，H．；Take，T．；Uchiyama，T．；Ochiai，H．；Abe， K．；Koizumi，K．；Asao，K．；Matsuki，K．；Hoshino，T．Ibid．1972， 25，610．（f）Miyamura，S．；Ogasawara，N．；Otsuka，H．；Niwa－ yama，S．；Tanaka，H．；Take，T．；Uchiyama，T．；Ochiai，H．Ibid． 1973，26， 479.
 （2）References la－d．
 （3）References 1 e and 1 f ．
 （4）（a）Miyoshi，T．；Iseki，M．；Konomi，T．；Imanaka，H．J．Antibiot． 1980，33，480；1980，33， 488.

[^2]: (10) Depending upon the localized pH , it is also possible that the $\mathrm{C}-6 \mathrm{OH}$ is lost as $\mathrm{H}_{2} \mathrm{O}$ from 4, forming the corresponding α, β unsaturated imino pyruvamide $\mathbf{5 b}$ that may either hydrolyze to 5 a or directly undergo conjugate addition.
 (11) Williams, R. M.; Anderson, O. P.; Armstrong, R. W.; Josey, J.; Meyers, H.; Eriksson, C. J. Am. Chem. Soc. 1982, 104, 6092.
 (12) Williams, R. M.; Dung, J.-S.; Josey, J.; Armstrong, R. W.; Meyers, H. J. Am. Chem. Soc. 1983, 105, 3214.
 (13) Armstrong, R. W.; Dung, J.-S.; Williams, R. M. 185th National Meeting of the American Chemical Society, Division of Organic Chemistry, Seattle, WA, March 1983; Abst. 10.
 (14) Dung, J.-S.;; Armstrong, R. W.; Williams, R. M. J. Org. Chem. 1984, 49, 3416.

[^3]: (15) Satisfactory combustion analytical data were reported for 8 and 9.
 (16) (a) Williams, R. M.; Armstrong, R. W.; Dung, J.-S. J. Am. Chem. Soc. 1984, 106, 5748 and references cited therein. (b) Williams, R. M.; Armstrong, R. W.; Dung, J.-S. J. Am. Chem. Soc., in press.

[^4]: (17) Nakatsuka, S.; Yamada, K.; Yoshida, K.; Asano, O.; Murakami, Y.; Goto, T. Tetrahedron Lett. 1983, 24, 5627.

